Legendre differential equation and Legendre functions:

Legendre equation

The differential equation
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Substituting these values in equation (1)
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This equation is an identity; therefore the coefficients of various powers of x must be equal to zero.Let
us first put the coefficients of x* equal to zero by substituting r = 0 ( The highest power of x is k).
{n(n+1) - k(k+1)}a, =0

Where a, being the coefficients of the first term of the series is not equal to zero, hence

n(n+1) - k(k+1)=0
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K=nork=-(n+1) ---—-—-—-- (4)

Again, equating the coefficients of ¥ to zero by putting r= 1 in equation (3)
[n(n + 1) — (k — Dkla, = 0

[nz+n—k2+k]a1 =0

(" =k + (n + B)la, = 0

(n+k)(n—k+1)a1 =0

As (n + k)(n — k + 1) # 0; therefore a = O--w--r-m-em (5)



To obtain a general relation between coefficients of series; Let us equate the coefficients of xk_r_2 in
equation (3).
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As a = 0, therefore equation (6) implies that
a = a = a = a = ——————— =0

i.e. all the coefficients a’s having odd suffixes are zero

Case (i): when k = n, we get from equation (6)
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Substituting r = 0,2,4 -—-- , we get
n(n—1)
For r=0 Cl2 =— —(Zn—l).z aO
For r=2 a =— (n—2)(n—3) _ n(n—1)(n—2)(n—-3)
4 (2n—-3).4 2 (2n—-1)(2n—-3).2.4 0
nn—-1)(n-2)(n—3)(n—4)(n-5)
For r=4 Ay == T 2n—D)(2n-3)(2n-5).2.46 0
and so on
Also we have a = a = a = a = ——————-— =0
Substituting values of various coefficients a’s in equation (2), we get the series solution for k=n as
y = r§0 ax
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y = ax tax +ax +a3x +ax +a5x +a6x ————————
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Where a, is arbitrary constant and n is positive integer if

Then above solution is called the Legendre polynomial or Legendre function of first kind and is
represented by P(x)

_ 1357————— (2n—1) n_ _nmn-1) n-2 nn—-Dm-2)(n=3) n—4  nm-Dn-2)(n-3)(n-4(n-5) n-6
p,(x) = ) [x an-nz* T T anhen324 X (2n—1)(2n—3)(2n—5).2.46 * ]

This series is a terminating series and for different values of n we get Legendre polynomials.
Case (ii):
when k = -n-1, we get from equation (6)
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Substituting r = 0,2,4 -—-- , we get
n+1)(n+2
For r=0 Clz = W 0
For r=2 a _ (nt3)(nt+4) _ _(tD@+2)(n+3)(n+4)
4 (2n+5).4 2 (2n+3)(2n+5).2.4 0
For r=4 a = (n+1)(n+2)(n+3)(n+4)(n+5)(n+6)
6 (2n+3)(2n+5)(2n+7).2.4.6 0
and so on
Also we have a = a = a = a = ——————— =0

Substituting values of various coefficients a’s in equation (2), we get the series solution for k= -n-1 as
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of second kind and denoted by Q,(x)
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This is an infinite or non-terminating series, sense is a positive integer.
As pn(x) and Qn(x) are two independent solutions of Legendre equation: therefore the most general solution of

If a, = the above solution is called Legendre polynomial or Legendre function

Legendre equation may be expressed as
y = A pn(x) + B Qn(x) Where A and B are arbitrary constants.



