Rodrigue’s Formula for Legendre Polynomials
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Multiplying both sides of above equation (2) by (x — 1) . we get
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Differentiating this equation (n+1) times by Leibniz’s theorem
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Substituting Y
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This is Legendre equation which has solution =

Legendre polynomial Pn(x)as



P (x) = CoH(0); where C is a constant. ---------—--—--- (6)
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Asy = (x — 1) = (x —1) (x + 1) ; therefore differentiating both sides n times by
Leibnitz theorem, we get
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Now putting x=1 on both sides of the above equation, all the terms in R.H.S. due to the factor (x-1) except
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the last term vanish and keeping in mind that o (x — 1) =n!; we get
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Substituting x=1 in equation (6); we get
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Substituting this value of C in equation (6), we get
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Deductions: It is convenient to deduce the values of P (x), P, (x), P,(x),P,(x) ————etc. by using

(since Pn(l) =1)

This is Rodrigue’s formula [ sincey

Rodrigue’s formula. Substituting n=0,1,2,3--- successively in equation (8), we obtain
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Proceedings as above we may deduce the values of P4(x), PS(x) etc



