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Orthogonal Properties of Legendre’s Polynomials

To know that
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The above two equations may be written equivalently in the form of a single equation using Kronecker
Delta Symbol 6mn
(dmn=0ifm= nand émn =1if m=n) as
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Proof. (a) Legendre equation is
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This may be expressed as
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Also P (x) and P_(x) are solutions of Legendre equation (1), therefore
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And Multiplying equation (2) by Pmand (3) by Pnand subtracting, We get
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Integrating above equation between given limits, we get
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Integrating by parts, we get
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From generating function of Legendre Polynomial, we have
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Squaring both sides we get
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Integrating both sides with respect to x between the limits -1 to +1. We get
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But from equation (4) [ P ()P (x)dx =0 for m=n; therefore
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Equating coefficients of z2" on either side, we get
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Combining equations (4) and (5),we may write
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