Laguerre's Differential Equation and Laguerre Polynomials

Laguerre differential equation is

$$x \frac{d^2y}{dx^2} + (1-x) \frac{dy}{dx} + ny = 0$$
(1)

Let the series solutions of above equation be

$$y = \sum_{r=0}^{\infty} a_r x^{k+r}$$
(2)
So that $\frac{dy}{dx} = \sum_{r=0}^{\infty} a_r (k+r) x^{k+r-1}$
and $\frac{d^2y}{dx^2} = \sum_{r=0}^{\infty} a_r (k+r) (k+r-1) x^{k+r-2}$

Substituting these values in (1); we get

$$x \sum_{r=0}^{\infty} a_{r} (k+r) (k+r-1) x^{k+r-2} + (1-x) \sum_{r=0}^{\infty} a_{r} (k+r) x^{k+r-1} + n \sum_{r=0}^{\infty} a_{r} x^{k+r} = 0$$

$$x \sum_{r=0}^{\infty} a_{r} (k+r) (k+r-1) x^{k+r-2} + \sum_{r=0}^{\infty} a_{r} (k+r) x^{k+r-1} - x \sum_{r=0}^{\infty} a_{r} (k+r) x^{k+r-1} + n \sum_{r=0}^{\infty} a_{r} x^{k+r} = 0$$

$$\sum_{r=0}^{\infty} a_{r} (k+r) (k+r-1) x^{k+r-1} + \sum_{r=0}^{\infty} a_{r} (k+r) x^{k+r-1} - \sum_{r=0}^{\infty} a_{r} (k+r) x^{k+r} + n \sum_{r=0}^{\infty} a_{r} x^{k+r} = 0$$
or
$$\sum_{r=0}^{\infty} a_{r} [(k+r)^{2} x^{k+r-1} - (k+r-n) x^{k+r}] = 0 \dots (3)$$

Equation (3) is an identity; therefore the various powers of x must be zero. Equating to zero the coefficients of lowest power of x i.e,.. (putting r=0) we get

$$a_0 k^2 = 0$$

as $a_0 \neq 0$, being the coefficient of first term of the series ; therefore

Now equating to zero, the coefficient of general term \mathbf{x}^{k+r} ; we get

$$a_{r+1} (k+r+1)^2 - a_r (k+r-n) = 0$$
 or $a_{r+1} = \frac{k+r-n}{(k+r+1)^2} a_r$
As $k = 0$; we have $a_{r+1} = \frac{r-n}{(r+1)^2} a_r$ (5)

Substituting r = 0, 1, 2, 3... Etc in given equation (5); we get

For r=0
$$a_1 = -\frac{n}{1}a_0 = (-1) na_0$$

For r=1
$$a_2 = \frac{(1-n)}{2^2} a_1 = -\frac{(n-1)}{2^2} X (-1) n a_0 = (-1)^2 \frac{n(n-1)}{(2!)^2} a_0$$

For r=2
$$a_3 = \frac{(2-n)}{2^2} a_2 = (-1)^3 \frac{n(n-1)(n-2)}{(3!)^2} a_0$$

For r
$$a_r = (-1)^r \frac{n(n-1)(n-2) \dots (n-r+1)}{(r!)^2} a_0$$

Therefore from equation (2); we have (for k = 0)

$$y = \sum_{r=0}^{\infty} a_r x^{k+r} = \sum_{r} a_r x^r$$

$$= a_0 + a_1 x^1 + a_2 x^2 + \dots + a_r x^r + \dots$$

$$= a_0 \left[1 - nx + \frac{n(n-1)}{(2!)^2} x^2 + \dots + (-1)^r \frac{n(n-1)(n-2) \dots (n-r+1)}{(r!)^2} x^r + \dots \right]$$

$$= a_0 \sum_{r=0}^{\infty} (-1)^r \frac{n(n-1)(n-2) \dots (n-r+1)}{(r!)^2} x^r$$

$$= a_0 \sum_{r=0}^{\infty} \frac{(-1)^r n!}{(r!)^2 (n-r)!} x^r \qquad (6)$$

In case n is a positive integer and $a_0 = 1$ and the series terminate after n^{th} degree term, the Solution (6) is said to be **Laguerre polynomial of degree** n and is denoted by

$$L_{n}(x) = \sum_{r=0}^{n} \frac{(-1)^{r} n!}{(r!)^{2} (n-r)!} x^{r} \qquad(7)$$

Then the solution of Laguerre equation for *n* to be a positive integer is

$$y = A L_n (x)$$
(8)