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Generating function of Hermite polynomials

Theorem. The function e® is called the generating function of Hermite polynomials
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The coefficient of z" (for fixed value of s) on R.H.S is obtained by putting r+2s =n i.e.,
r = n-2s and is given by
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The total coefficient of z" is obtained by summing over all allowed values of s and since
r=n-2s
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Thus if nis even; s goes from 0 to =~ and if n is odd, s goes from 0 to "%1
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Hence we may write
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Thus the function e~ = e{x (=97 generates all the Hermite polynomials and hence it is

called the generating function of Hermite polynomials.



