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Generating function of Hermite polynomials

Theorem. The function e2zx- is called the generating function of Hermite polynomials𝑧2

I.e., f(x,z) = 𝑒2𝑧𝑥− 𝑧2
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Proof. We have
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The coefficient of zn (for fixed value of s) on R.H.S is obtained by putting r+2s = n  i.e.,
r = n-2s and is given by

   (− 1) 𝑠  ( 2𝑥) 𝑛−2𝑠

(𝑛−2𝑠)! 𝑠!
The total coefficient of zn is obtained by summing over all allowed values of s and since

r = n-2s
n-2s ≥ 0 or s ≤ 𝑛
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Thus if n is even;  s goes from 0 to and if n is odd, s goes from 0 to𝑛
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Hence we may write
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Thus the function generates all the Hermite polynomials and hence it is𝑒2𝑧𝑥− 𝑧2

= 𝑒{𝑥2−(𝑧−𝑥)2}

called the generating function of Hermite polynomials.


