Gauss Hypergeometric Equation

The differential equation

$$x(1-x)\frac{d^{2}y}{dx^{2}} + [\gamma - (\alpha + \beta + 1)x]\frac{dy}{dx} - \alpha\beta y = 0 \quad(1)$$

With α , β , γ as constants is known as Gauss Hypergeometric Equation or simply the Gauss Equation or Hypergeometric equation. The solution hypergeometric equation is called the hypergeometric function.

Dividing the hypergeometric equation throughout by $x^2 - x$; we get

$$\frac{d^2y}{dx^2} + X_1 \frac{dy}{dx} + X_2 y = 0. \qquad \dots (2)$$

Where
$$X_1 = \frac{(\alpha+\beta+1)x-\gamma}{x^2-x}$$
 and $X_2 = \frac{\alpha\beta}{x^2-x}$

It is obvious that $X_1 \to \infty$ for x=0 or 1 or ∞

$$X_2 \rightarrow \infty$$
 for x=0 or 1

Therefore, x=0,1 and ∞ are singularities of equation(1).

Thus we can integrate(1) in series about x=0 or 1 or ∞ . We therefore discuss the series integration in three cases.

Case (a) when x=0; then taking the series solution (1) as

$$y = \sum_{\lambda=0}^{\infty} a_{\lambda} x^{k+\lambda} \qquad \dots$$
 (3)

So that

$$\frac{dy}{dx} = \sum_{\lambda=0}^{\infty} a_{\lambda}(k + \lambda) x^{k+\lambda-1}$$

And
$$\frac{d^2y}{dx^2} = \sum_{\lambda=0}^{\infty} a_{\lambda}(k+\lambda)(k+\lambda-1)x^{k+\lambda-2}$$

Substituting these values in (1); we get

$$x(1-x)\sum_{\lambda}a_{\lambda}(k+\lambda)(k+\lambda-1)x^{k+\lambda-2} + \left[\gamma - (\alpha+\beta+1)x\right]\sum_{\lambda}a_{\lambda}(k+\lambda)x^{k+\lambda-1} - \alpha\beta\sum_{\lambda}a_{\lambda}x^{k+\lambda} = 0$$

$$\sum_{\lambda} a_{\lambda}(k+\lambda)(k+\lambda-1)x^{k+\lambda-1} - \sum_{\lambda} a_{\lambda}(k+\lambda)(k+\lambda-1)x^{k+\lambda} + \gamma \sum_{\lambda} a_{\lambda}(k+\lambda)x^{k+\lambda-1}$$

$$-(\alpha + \beta + 1) \sum_{\lambda} a_{\lambda}(k + \lambda)x^{k+\lambda} - \alpha\beta \sum_{\lambda} a_{\lambda}x^{k+\lambda} = 0$$

$$\sum_{\lambda} a_{\lambda}[(k + \lambda)(k + \lambda - 1) + (\alpha + \beta + 1)(k + \lambda) + \alpha\beta]x^{k+\lambda}$$

$$-\sum_{\lambda} a_{\lambda}[(k + \lambda)(k + \lambda - 1) - \gamma(k + \lambda)]x^{k+\lambda-1} = 0$$

$$\sum_{\lambda} a_{\lambda}[(k + \lambda)^{2} - (k + \lambda) + (\alpha + \beta)(k + \lambda) + (k + \lambda) + \alpha\beta]x^{k+\lambda}$$

$$-\sum_{\lambda} a_{\lambda}[(k + \lambda)(k + \lambda - 1) - \gamma(k + \lambda)]x^{k+\lambda-1} = 0$$

$$\sum_{\lambda} a_{\lambda} [\{(k+\lambda)^{2} + (\alpha+\beta)(k+\lambda) + \alpha\beta\} x^{k+\lambda} - (k+\lambda)(k+\lambda+\gamma-1)x^{k+\lambda-1}] = 0 \quad(4)$$

As equation(4) is an identity, the coefficients of various powers of x must be equal to zero. Equating to zero the coefficient of lowest power of x i,e x^{k-1} ;(putting $\lambda = 0$) we get

$$a_0 k(k + \gamma - 1) = 0$$
(5)

This equation is called the indicial *equation*. As $a_0 \ne 0$, being the coefficient term of the series; we must have

$$k = 0$$
 and $k = 1 - \gamma$ (6)

Equating to zero the coefficient of next higher power of x i.e x^k ; we get

$$a_0[k^2 + (\alpha + \beta)k + \alpha\beta] - (k+1)(k+\gamma)a_1 = 0$$

$$a_{1} = \frac{k^{2} + (\alpha + \beta)k + \alpha\beta}{(k+1)(k+\gamma)} a_{0} = \frac{(k+\alpha)(k+\beta)}{(k+1)(k+\gamma)} a_{0} \qquad \dots \dots (7)$$

Again equating to zero the coefficient of general term, i.e $x^{k+\lambda}$, we get recurrence relation between the coefficients $a^{'}_{3}s$

$$a_{\lambda}\{(k+\lambda)^{2}+(\alpha+\beta)(k+\lambda)+\alpha\beta\}-(k+\lambda+1)(k+\lambda+\gamma)a_{\lambda+1}=0$$

$$a_{\lambda+1} = \frac{(k+\lambda+\alpha)(k+\lambda+\beta)}{(k+\lambda+1)(k+\lambda+\gamma)} a_{\lambda} \qquad \dots (8)$$

$$(k + \lambda)^{2} + (\alpha + \beta)(k + \lambda) + \alpha\beta = (k + \lambda)^{2} + \alpha(k + \lambda) + \beta(k + \lambda) + \alpha\beta$$
$$= (k + \lambda)(k + \lambda + \alpha) + \beta(k + \lambda + \alpha) = (k + \lambda + \alpha)(k + \lambda + \beta)$$

Choice (1) when k=0, we have from (8)

Substituting $\lambda = 0, 1, 2....$; we get

$$\lambda = 0 \qquad a_1 = \frac{\alpha \cdot \beta}{1 \cdot \gamma} a_0$$

$$\lambda = 1$$
 $a_2 = \frac{(1+\alpha)(1+\beta)}{2(1+\gamma)} a_1 = \frac{\alpha(1+\alpha)\beta(1+\beta)}{2!\gamma(1+\gamma)} a_0$

$$\lambda = 2 \hspace{1cm} a_3 = \frac{(2+\alpha)(2+\beta)}{3(2+\gamma)} \; a_2 = \frac{\alpha(\alpha+1) \; (\alpha+2).\beta(\beta+1)(\beta+2)}{3!\gamma(\gamma+1)(\gamma+2)} \; a_0 \; \text{and so on}$$

Substituting k=0 and the values of a_1 , a_2 , a_3 etc in (3) and using the notation

$$(\alpha)_n = \alpha(\alpha + 1)(\alpha + 2)....(\alpha + n - 1)$$
we get

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

If $a_0 = 1$, then

Is a particular solution of given equation and the series is known as hypergeometric series

Convergence of the series. The mth term of the series

$$y_m = \frac{(\alpha)_m(\beta)_m}{m! (\gamma)_m} x^m$$

And the $(m+1)^{th}$ term is

$$y_{m+1} = \frac{(\alpha)_{m+1}(\beta)_{m+1}}{(m+1)! (\gamma)_{m+1}} x^{m+1}$$

So that

$$\frac{y_{m+1}}{y_m} = \frac{(\alpha)_{m+1}(\beta)_{m+1}}{(m+1)! (\gamma)_{m+1}} \frac{m! (\gamma)_m}{(\alpha)_m (\beta)_m} \cdot \frac{\chi^{m+1}}{\chi^m}$$

$$(\alpha)_{m} = \alpha(\alpha + 1)(\alpha + 2)....(\alpha + m - 1)$$
 $(\alpha)_{m+1} = \alpha(\alpha + 1)(\alpha + 2)....(\alpha + m - 1)(\alpha + m)$

$$=\frac{(\alpha+m)(\beta+m)}{(m+1)(\gamma+m)}\chi$$

$$\lim_{m \to \infty} \left| \frac{y_{m+1}}{y_m} \right| = \lim_{m \to \infty} \frac{\frac{(1 + \frac{\alpha}{m})(1 + \frac{\beta}{m})}{(1 + \frac{1}{m})(1 + \frac{\gamma}{m})}}{x_m} |x| = |x|$$

The series is convergent if $\lim_{m\to\infty}\left|\frac{y_{m+1}}{y_m}\right|<1$ or |x|<1. Obviously, the radius of convergency is unity.

The series $y = \sum_{n=0}^{\infty} \frac{(\alpha)_n(\beta)_n}{n! (\gamma)_n}$ for x<1 is hypergeometric series and its solution is called

hypergeometric function, denoted by $_2F_1(\alpha,\beta,\gamma;x)$ where the leading subscript 2 indicates that the first two symbols in bracket $(\alpha \ and \ \beta)$ appear in the numerator and the second subscript 1 indicates that one symbol (γ) appears in the denominator or $F(\frac{\alpha\beta}{\gamma},x)$ Thus, the solution for the *hypergeometric* equation for k=0 is

$$y = a_{2}F_{1}(\alpha, \beta, \gamma; x)$$
(11)

choice(ii): when $k = 1 - \gamma$; the solution of hypergeometric differential equation for this value of k is given by

From equation (8) we have

Where $\alpha'=1-\gamma+\alpha$, $\beta'=1-\gamma+\beta$ and $\gamma'=2-\gamma$ (14) Substituting $\lambda=0,1,2,3$ etc; we get

$$\begin{split} a_1 &= \frac{\alpha'.\beta'}{1.\gamma'} \ a_0 \\ a_2 &= \frac{(\alpha'+1)(\beta'+1)}{2(\gamma'+1)} \ a_1 = \frac{\alpha'(\alpha'+1)\beta'(\beta'+1)}{2!\gamma'(\gamma'+1)} a_0 \ \text{and so on}. \end{split}$$

Substituting these values in (12); we get

$$y = a_0 x^{1-\gamma} \left[1 + \frac{\alpha'.\beta'}{1.\gamma'} x + \frac{\alpha'(\alpha'+1)\beta'(\beta'+1)}{2!\gamma'(\gamma'+1)} x^2 + \dots + \frac{(\alpha')_n \cdot (\beta')_n}{n! \cdot (\gamma')_n} x^n + \dots \right]$$

$$= a_0 x^{1-\gamma} \sum_{n=0}^{\infty} \frac{(\alpha')_n \cdot (\beta')_n}{n! \cdot (\gamma')_n}$$

$$= a_0 x^{1-\gamma} {}_2 F_1(\alpha', \beta', \gamma'; x)$$

$$= a_0 x^{1-\gamma} {}_2 F_1(1-\gamma+\alpha, 1-\gamma+\beta, 2-\gamma; x) \quad \dots \dots (15a)$$

If $a_0 = 1$; the solution becomes

$$y = x^{1-\gamma} {}_{2}F_{1}(1-\gamma+\alpha,1-\gamma+\beta,2-\gamma;x)$$
(15b)

Thus we got two independent solutions (10) and (15) of hypergeometric differential equation about x=0

When $\gamma = 1$, the two solutions become identical and when γ is negative integer say -n; then

$$a_{m} = \sum_{m=0}^{\infty} \frac{(\alpha)_{m}(\beta)_{m}}{m! (-n)_{m}} a_{0}$$

While $(-n)_m = (-n)(-n+1)...0, 1.....(-n+m-1) = 0$; thereby giving $a_m = \infty$; thus the solution of the type ${}_2F_1(\alpha, \beta, \gamma; x)$ cannot be obtained for negative value of γ . thus for $\gamma \neq 1, -1, -2.....$ (negative integers); the two solutions for k=0 and $k=1-\gamma$ are linearly independent and so the general solution of hypergeometric equation can be written as

Case (b): For the singularity at x=1, the solution is obtained by developing the series about x=1. For this, let us substitute 1 - x = t; so that $\frac{dt}{dx} = -1$

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = -\frac{dy}{dt}$$
And
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} \left(-\frac{dy}{dt}\right) = \frac{d}{dt} \left(-\frac{dy}{dt}\right) \cdot \frac{dt}{dx} = \frac{d^2y}{dt^2}$$

Then eq(1) reduces to

$$x(1-x)\frac{d^{2}y}{dx^{2}} + [\gamma - (\alpha + \beta + 1)x]\frac{dy}{dx} - \alpha\beta y = 0$$

$$t(1-t)\frac{d^{2}y}{dt^{2}} + [\gamma - (\alpha + \beta + 1)(-t+1)](-\frac{dy}{dt}) - \alpha\beta y = 0$$

$$t(1-t)\frac{d^{2}y}{dx^{2}} + [(\alpha + \beta - \gamma + 1) - (\alpha + \beta + 1)t]\frac{dy}{dt} - \alpha\beta y = 0$$

This equation is similar to eq(1) except that γ is replaced by $\gamma' = \alpha + \beta - \gamma + 1$ and x by t = 1 - x.hence by similar procedure the roots of indicial equation obtained re 0 and

$$1-\gamma' = \gamma - \alpha - \beta$$
and the corresponding solutions are

$$y = a_2 F_1(\alpha, \beta, \gamma', t)$$

$$y = b t^{1-\gamma'} {}_{2}F_{1}(1-\gamma' + \alpha, 1-\gamma' + \beta, 2-\gamma'; t)$$

The general solution is

$$y = A_2 F_1(\alpha, \beta, \gamma'; t) + B t^{1-\gamma'} {}_2 F_1(1 - \gamma' + \alpha, 1 - \gamma' + \beta, 2 - \gamma'; x)$$

$$= A_2 F_1(\alpha, \beta, \alpha + \beta - \gamma + 1, 1 - x) + B(1 - x)^{\gamma - \alpha - \beta} {}_2 F_1(\gamma - \alpha, \gamma - \beta, \gamma - \alpha - \beta + 1; 1 - x)$$
)......(17)

Case (c) when $x = \infty$, the series solution will consist of series developed about $x = \infty$. for this, we substitute

$$x = \frac{1}{t} i.e \ t = \frac{1}{x} or \frac{dt}{dx} = -\frac{1}{x^2} = -t^2$$

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = -t^2 \frac{dy}{dt}$$
 and

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dx} \left(\frac{dy}{dx} \right) \frac{dt}{dx}$$

$$= \frac{d}{dt} \left(-t^2 \frac{dy}{dt} \right) \left(-t^2 \right) = t^2 \left(2t \frac{dy}{dt} + t^2 \frac{d^2y}{dt^2} \right)$$

Making these substitutions in(1); we get

$$x(1-x)\frac{d^2y}{dx^2} + \left[\gamma - (\alpha + \beta + 1)x\right]\frac{dy}{dx} - \alpha\beta\gamma = 0$$

$$t^{2}(1-t)\frac{d^{2}y}{dt^{2}} + \left[2t(1-t) - (\alpha+\beta+1)t + \gamma t^{2}\right]\frac{dy}{dt} + \alpha\beta y = 0 \dots (18)$$

Let the series of solution of above equation be

$$y = \sum_{\lambda} a_{\lambda} t^{k+\lambda} \quad ---- \quad (19)$$

then,
$$\frac{dy}{dt} = \sum_{\lambda} a_{\lambda}(k + \lambda)t^{k+\lambda-1}$$

And
$$\frac{d^2y}{dt^2} = \sum_{\lambda} a_{\lambda}(k + \lambda)(k + \lambda - 1)t^{k+\lambda-2}$$

Making these substitutions in (18), we get

$$\begin{split} t^2 (1-t) \sum_{\lambda} a_{\lambda}(k+\lambda)(k+\lambda-1) t^{k+\lambda-2} \\ &+ [2t(1-t) - (\alpha+\beta+1)t + \gamma t^2] \sum_{\lambda} a_{\lambda}(k+\lambda) t^{k+\lambda-1} + \alpha \beta \sum_{\lambda} a_{\lambda} t^{k+\lambda} = 0 \end{split}$$

Or
$$\sum_{\lambda=0}^{\infty} [(k+\lambda)(k+\lambda-1) + (2-\alpha-\beta-1)(k+\lambda) + \alpha\beta] a_{\lambda}^{k+\lambda}$$

$$-\sum_{\lambda=0}^{\infty} [(k+\lambda)(k+\lambda-1) + (2-\gamma)(k+\lambda)a_{\lambda}(k+\lambda)t^{k+\lambda-1} = 0$$

This equation is an identity, therefore coefficients of various powers of t must be zero. Equating to zero, the coefficients of lowest power of t i.e. t^k to zero; we get

$$a_0[k(k-1) + (2 - \alpha - \beta - 1)k + \alpha\beta] = 0$$

Or $a_0(k-\alpha)(k-\beta) = 0$

This in an indicial equation and gives $k = \alpha \ or \ \beta \ (since \ a_0 \neq 0) \ \dots (20)$

Again, equating to zero the coefficient of general term $t^{k+\lambda+1}$ (the highest power of t); we get

$$[(k + \lambda)(k + \lambda + 1) + (2 - \alpha - \beta - 1)(k + \lambda + 1) + \alpha\beta]a_{\lambda+1}$$
$$-[(k + \lambda)(k + \lambda - 1) + (2 - \gamma)(k + \lambda)a_{\lambda}] = 0$$

This gives the recurrence relation between the coefficients of a_{λ} s

$$a_{\lambda+1} = \frac{\frac{(k+\lambda)(k+\lambda-1)+(2-\gamma)(k+\lambda)}{(k+\lambda)(k+\lambda+1)+(1-\alpha-\beta)(k+\lambda+1)+\alpha\beta}}{\frac{(k+\lambda)(k-\gamma+\lambda+1)}{(k+\lambda+1)+(k+\lambda+1-\alpha-\beta)+\alpha\beta}} a_{\lambda} \qquad \dots \dots (21)$$

Choice (1) When $k = \alpha$; equation (21) gives

$$a_{\lambda+1} = \frac{(\alpha+\lambda)(\alpha-\gamma+\lambda+1)}{(\alpha+\lambda+1)+(\alpha+\lambda+1-\alpha-\beta)+\alpha\beta} \ a_{\lambda}$$

$$(\alpha + \lambda + 1) + (\alpha + \lambda + 1 - \alpha - \beta) + \alpha\beta = (\alpha + \lambda + 1) + (\lambda + 1 - \beta) + \alpha\beta$$

$$= (\lambda + 1)^{2} + \alpha(\lambda + 1) - \beta(\lambda + 1) - \alpha\beta + \alpha\beta$$

$$= (\lambda + 1)^{2} + \alpha(\lambda + 1) - \beta(\lambda + 1) = (\lambda + 1)(\lambda + 1 + \alpha - \beta)$$

$$= \frac{(\alpha+\lambda)(\alpha-\gamma+\lambda+1)}{(\lambda+1)+(\alpha-\beta+\lambda+1)} a_{\lambda} \qquad \dots (22)$$

Substituting $\lambda = 0, 1, 2, 3....$ etc. we get

$$\lambda = 0 \qquad a_1 = \frac{\alpha(\alpha - \gamma + 1)}{(\alpha - \beta + 1)} a_0$$

$$\lambda = 1 \qquad a_2 = \frac{(\alpha+1)(\alpha-\gamma+2)}{2(\alpha-\beta+2)} \ a_1 = \frac{(\alpha+1)(\alpha-\gamma+1)(\alpha-\gamma+2)}{2! \ (\alpha-\beta+1)(\alpha-\beta+2)} \ a_0 \text{ so on, giving}$$

$$a_n = \frac{(\alpha)_n(\alpha-\gamma+1)_n}{n! \ (\alpha-\beta+1)_n} \ a_0$$

Substituting these values and $k = \alpha$ in series solution (19); we get

$$y = t^{\alpha} \sum_{\lambda} a_{\lambda} t^{\lambda} = a_0 t^{\alpha} \sum_{\lambda} \frac{(\alpha)_n (\alpha - \gamma + 1)_n}{n! (\alpha - \beta + 1)_n} t^n$$
$$= a_0 t^{\alpha} {}_2 F_1(\alpha, \alpha - \gamma + 1, \alpha - \beta + 1, t)$$

As $t = \frac{1}{r}$; we have the solution $k = \alpha$ as

$$y = a_0 x^{-\alpha} {}_2 F_1(\alpha, \alpha - \gamma + 1, \alpha - \beta + 1, \frac{1}{x})$$
 (23)

choice(ii): when $k = \beta$; we have the series solution

$$y = a_0 x^{-\beta} {}_{2}F_{1}(\beta, \beta - \gamma + 1, \beta - \alpha + 1, \frac{1}{x})$$
 (24)

Hence the general solution for case $x = \infty$ is

$$y = Ax^{-\alpha} {}_{2}F_{1}(\alpha, \alpha - \gamma + 1, \alpha - \beta + 1, \frac{1}{x}) + Bx^{-\beta} {}_{2}F_{1}(\beta, \beta - \gamma + 1, \beta - \alpha + 1, \frac{1}{x}) \qquad \dots \dots (25)$$