6.48 Confluent Hypergeometric Equation and Function

The confluent hypergeometric equation is
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As 2Fl(oc, B,v; x)is the solution of eq(1),the solution of equation (2) is
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This equation is called confluent hypergeometric differential equation and often occurs in
boundary value problems of mathematical physics.the solution of eq(3) may be expressed as
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This is denoted by 1F 1(oc,y ; x) and is known as a confluent hypergeometric function. The

leading subscript 1 indicates that the first symbol in bracket is numerator and the second subscript 1
indicates that second symbol y is the denominator.



confluent.hypergeometric equation x = 0Ois a removable (non essential) singularity; so its
solution may be developed directly by series method at x = 0 taking the series as
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comparing the coefficients of lowest power of x to zero, we get the indicial equation
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Now comparing the coefficients of the general terms ¥ to zero; we get the recurrence
relation
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Hence the solution of confluent hypergeometric equation for k = 0 becomes
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And for k = 1 — y;the solution is
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Where F 1(0( — v + 1,2 — y; x)is called the confluent hypergeometric function of second kind.

Therefore the general solution of confluent hypergeometric equation is
y=A4 1F1(0(,y;x)+Bx1_y Fla—-v+1,2-vx .. (10)
This situation holds fory > 0.

By the ratio test of (m + 1)thterm to mthterm; we have
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This shows that the confluent hypergeometric equation is convergent.



