Fourier’s and Laplace’s Integral Transforms
b

In mathematical physics we used pairs of functions like g(a) = [ f(t) k(a, t) dt

a

The function g(«) is called the integral transform of f(t), by the kernel k(a, t).

The integral transforms are useful in mathematical analysis and physical applications.
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Fourier’s Transform
If £(x)is periodic function of x, the the Fourier Integral of f(x)may be expressed
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This may be expressed as
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The function g(w)is called the Fourier Transform of f(t)and f(t)is called Fourier Inverse
Transform of g(w).

The integral (2) transforms a time function f(t)into its equivalent frequency function
g(w);while integral (1) reverses the process.

Infinite Fourier Sine and Cosine Transforms. The Fourier Transformation of f(t) is
given by
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(Replacing t by -t in first integral)



S (=) if function f(t) is even
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Thus eq(3) gives
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Now using — —— = Cos wt and — = sin wt; we get

L2 [f(t) cos wt dt for even function ... (5)
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The integral (5) is called Infinite Fourier cosine transform and (6) is called infinite
sine integral and are denoted by
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The Inverse Fourier cosine transforms leat to functions
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Equations (7) and (9) form a pair of Fourier cosine transforms while equations (8)
and (10) form a pair of Fourier sine transforms.

Properties of Fourier’s Transform



1. Addition Theorem or Linearity Theorem. If f(t) = a1f1(t) + azfz(t) +
then the Fourier Transforms of f(t)is
g(w) = algl(w) + azgz(w) S
Where g, (), g,(w)..are Fourier Transforms of f L®) £ () anda,a

are constants.
Proof. The fourier transform of f(t) is given by
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2. Similarity Theorem or Change of Scale Property: if g(w)is the Fourier
transform of f(t),the Fourier Transform of f(at)is
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Proof. Denoting the Fourier Transform of f(t)by F.T {f(t)} we have
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Hence F.T[f(at)] = % foo flat) e dt

Substituting y = at,in above integral, we get
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This theorem is well known in its applications to waveforms and spectra, where
compression of time scale by given factor compresses the periods of all harmonic



components equally and therefore increases the frequency of every component by the
same factor.



