3. if $g(\omega)$ is the Fourier Transform of f(t), then the Fourier transform of the complex conjugate of f(t) will be given by $g^*(-\omega)$; where * indicates the complex conjugate of . the corresponding complex function.

Proof. We have
$$g(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt$$

Taking complex conjugate on both sides; we get

$$g^*(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f^*(t) e^{+i\omega t} dt$$

$$g * (\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f * (t) e^{-i(-\omega)t} dt$$

Replacing ω by $(-\omega)$; we get

$$g^*(-\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f^*(t) e^{-i\omega t} dt$$

Hence
$$g * (-\omega) = F.T[f * (t)]$$
(3)

4. Shifting Property:

if $g(\omega)$ is the Fourier Transform of f(t), then the Fourier transform of $f(t \pm a)$ will be given by $e^{\pm i\omega a}g(\omega)$; where a is any constant.

Proof. By definition if Infinite Fourier transform

$$F.T[f(t \pm a)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(t \pm a) e^{-i\omega t} dt$$

Substituting $(t \pm a) = y$ i.e, dt = dy; we have

According to this theorem if a given function be shifted in the positive or negative direction by an amount a, no Fourier component changes in amplitude; by its Fourier transform suffers phase changes.

5. Modulation Theorem:

if $g(\omega)$ is the Fourier Transform of f(t), then the Fourier transform of f(t) cos at is given by

$$\frac{1}{2}g(\omega-a)+\frac{1}{2}g(\omega+a)$$

6. Convolution Theorem: the transform of a product of two functions is given by a convolution integral.

Proof: Let $f_1(t)$ and $f_2(t)$ be two given functions and their product functions f(t) i.e, $f(t) = f_1(t).f_2(t)$

From definition

$$F.T[f(t)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f_1(t) \cdot f_2(t) e^{-i\omega t} dt \quad(6)$$

If $g_1(\omega')$ is the Fourier Transform of $f_1(t)$, then the Fourier inverse Transform $g_1(\omega')$ is

$$f_1(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-i\omega' t} g_1(\omega') d\omega'$$
(7)

Substituting value of $f_1(t)$ from (7) in (6); we get

$$F.T[f(t)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \{ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g_1(\omega') e^{-i\omega't} d\omega' \} f_2(t) . e^{-i\omega t} dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \{ g_1(\omega') \int_{-\infty}^{+\infty} f_2(t) . e^{-(\omega - \omega')t} dt \} d\omega' (8)$$

Now, the Fourier Transform of $f_2(t)$ is given by

$$g_2(\omega) = \int_{-\infty}^{+\infty} f_2(t) \cdot e^{-i\omega t} dt$$

Replacing ω by $\omega-\omega'$ in above equation; we get

$$g_2(\omega - \omega') = \int_{-\infty}^{+\infty} f_2(t) \cdot e^{-i(\omega - \omega')t} dt$$
(9)

Combining (8) and (9), the Fourier transform of f(t) becomes

$$F.T[f(t)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g_1(\omega').g_2(\omega - \omega') d\omega'$$
(10)

Thus the Fourier Transform of a product of two functions $\boldsymbol{f}_1(t)$ and $\boldsymbol{f}_2(t)$ is given by an integral, known as *Convolution Integral* where the functions \boldsymbol{g}_1 and \boldsymbol{g}_2 are said to be convolved with each other.

7. Parseval's Theorem: The Fourier Transform of a Convolution integral is given by the product of transforms of the convolving functions.

Proof: let f(t) be given convolution integral i.e,

The Fourier transform of f(t) is

$$g(\omega) = F.T[f(t)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \left\{ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f_1(t') . f_2(t-t') dt' \right\} . e^{-i\omega t} dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f_1(t') e^{-i\omega t'} dt' . \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} . f_2(t-t') . e^{-i\omega t} e^{i\omega t'} dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f_1(t') e^{-i\omega t'} dt' \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f_2(t-t') \cdot e^{i\omega(t-t')} dt \dots (12)$$

If $\boldsymbol{g}_1(\omega)$ and $\boldsymbol{g}_2(\omega)$ are Fourier Transforms of $\boldsymbol{f}_1(t)$ and $\boldsymbol{f}_2(t)$ respectively, we have

$$g_1(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f_1(t') e^{-i\omega t'} dt'$$
(13)

$$g_2(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f_2(t) \cdot e^{-i\omega t} dt$$
(14)

Changing t and t - t' in (14); we get

$$g_2(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f_2(t - t') \cdot e^{-i\omega(t - t')} dt$$
(15)

Hence, from (12),(13) and (15), we have

$$g(\omega) = g_1(\omega). g_2(\omega)$$
(16)