Evaluation of Gamma Function

From definition
$$\Gamma n = \int_{0}^{\infty} e^{-x} x^{n-1} dx$$

Integrating by parts keeping x^{n-1} as first function, we get

$$\Gamma n = \left[-e^{-x} \cdot x^{n-1} \right]_0^{\infty} + \int_0^{\infty} (n-1) e^{-x} x^{n-2} dx$$
$$= (n-1) \int_0^{\infty} e^{-x} x^{n-2} dx = (n-1) \Gamma(n-1)$$

Thus we have

$$\Gamma n = (n-1) \Gamma (n-1) \qquad \dots (2)$$

Similarly, $\Gamma(n-1) = (n-2)\Gamma(n-2)$

Hence it follows that $\Gamma n = (n-1)(n-2)\Gamma (n-2)$

If *n* is a positive integer, then proceeding as above repeatedly, we get

$$\Gamma n = (n-1)(n-2)(n-3)....3.2.1 \Gamma 1$$

But

$$\Gamma \ 1 = \int_{0}^{\infty} e^{-x} dx = [-e^{-x}]_{0}^{\infty} = 1$$
(3)

Hence when n is a positive integer

$$\Gamma n = (n-1)(n-2)(n-3)....3.2.1 = (n-1)!$$
(4)

Thus, if n is positive integer, the for all values of n

$$\Gamma n = (n-1)\Gamma (n-1) = (n-1)!$$
(5)

This is a fundamental property of the Gamma Functions. From this, we may write

$$\Gamma(n+1) = n\Gamma n$$
 i,e $\Gamma n = \frac{\Gamma(n+1)}{n}$ (6)

Putting n=0, we get

$$\Gamma \ 0 = \infty \qquad \dots (7)$$

It can be further shown that

$$\Gamma (-n) = \infty \dots (8)$$

$$\Gamma n = \frac{\Gamma (n+1)}{n} \Rightarrow \Gamma (-1) = \frac{\Gamma (-1+1)}{-1} = \frac{\Gamma 0}{-1} = -\Gamma 0 = \infty$$
 and so on

Transformation of Gamma Function (Other Forms of Gamma Function)

By definition
$$\Gamma n = \int_{0}^{\infty} e^{-x} x^{n-1} dx \qquad \dots \dots (1)$$

(a) Substituting $x = \lambda y$ \therefore dx = λ dy in equation (1), we get

$$\Gamma \ n = \int_{0}^{\infty} e^{-\lambda y} \lambda^{n-1} y^{n-1} . \ \lambda \ dy = \lambda^{n} \int_{0}^{\infty} e^{-\lambda y} y^{n-1} dy \dots (2a)$$

$$\therefore \int_{0}^{\infty} e^{-\lambda y} y^{n-1} dy = \frac{\Gamma n}{\lambda^{n}} \qquad \dots$$
 (2b)

(b) Substituting $e^{-x} = y$, $\therefore x = \log_e \frac{1}{y}$ and $dx = -\frac{dy}{y}$ in eq(1), we get

$$\Gamma \ n = \int_{0}^{\infty} e^{-x} x^{n-1} dx = -\int_{1}^{0} y (\log \frac{1}{y})^{n-1} \frac{dy}{y} = \int_{0}^{1} (\log \frac{1}{y})^{n-1} dy \dots (3)$$

(c) substituting $x^n = y$ $\therefore x = y^{1/n}$ and $dx = \frac{1}{n} y^{(1-n)/n} dy$ in equation (1), we get

$$\Gamma n = \int_{0}^{\infty} e^{-x} x^{n-1} dx = \int_{0}^{\infty} e^{-y^{1/n}} y^{(n-1)/n} \frac{1}{n} y^{(1-n)/n} dy$$
$$= \frac{1}{n} \int_{0}^{\infty} e^{-y^{1/n}} dy \dots (4)$$

Equations (2a), (3) and (4) represent transformed (other forms of Gamma Function)

Corollary. From eq (4), we have

Replacing n by $\frac{1}{2}$ in equation (5), we get

$$\frac{1}{2}$$
. $\Gamma = \int_{0}^{\infty} e^{-y^{2}} dy = \frac{\sqrt{\pi}}{2}$ (since $\int_{0}^{\infty} e^{-y^{2}} dy = \frac{\sqrt{\pi}}{2}$, refer section 4.8a)
$$\Gamma = \frac{1}{2} = \sqrt{\pi}$$
 (6)

Relation between Beta and Gamma Functions

$$\beta(m, n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$$

The transformed form (2a) of section 4.6 of Gamma Function Γm is given by

Multiplying both sides by $e^{-\lambda} \lambda^{n-1}$ and integrating with respect to λ between the limits 0 and ∞ , we get

$$\Gamma m \int_{0}^{\infty} e^{-\lambda} \lambda^{n-1} d\lambda = \int_{0}^{\infty} \left[\int_{0}^{\infty} e^{-\lambda(1+x)} \cdot \lambda^{m+n-1} d\lambda \right] x^{m-1} dx \quad \dots \dots (2)$$
But
$$\int_{0}^{\infty} e^{-\lambda} \lambda^{n-1} d\lambda = \Gamma n \quad \text{and also} \qquad \text{here } x = \lambda$$

$$\int_{0}^{\infty} e^{-\lambda(1+x)} \cdot \lambda^{m+n-1} d\lambda = \frac{\Gamma(m+n)}{(1+x)^{m+n}} \text{by (2b) of section 4.6}$$

$$\int_{0}^{\infty} e^{-\lambda y} y^{n-1} dy = \frac{\Gamma n}{\lambda^{n}} \quad \text{here (1+x)= } \lambda, \text{ n=m+n and y=} \lambda$$

Substituting these values in eq (2), we get

$$\Gamma m \Gamma n = \int_{0}^{\infty} \frac{\Gamma(m+n)}{(1+x)^{m+n}} x^{m-1} dx \qquad (3a)$$
$$= \Gamma(m+n) \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx$$

from equation (2) of section 4.4 is
$$\beta(m, n) = \int_{0}^{\infty} \frac{y^{m-1}}{(1+y)^{m+n}} dx$$

= $\Gamma(m+n) \beta(m,n)$ by equation (2) of section 4.4

$$\therefore \quad \beta(m, n) = \frac{\Gamma m \, \Gamma n}{\Gamma(m+n)} \qquad \qquad \dots (3b)$$

This is an important relation between Beta and Gamma functions.