KAKATIYA UNIVERSITY-WARANGAL-TELANGANA

Under Graduate Courses (Under CBCS 2025–2026 onwards)

B.Sc (PHYSICS) I Year, SEMESTER – II Paper-II: Thermal Physics

w.e.f academic year (2025-26) (CBCS)

Total: 56 Hrs (4hrs/week)

UNIT-I

Kinetic theory of gases: (4 hrs)

Introduction-Deduction of Maxwell's law of distribution of molecular speeds, Transport

Phenomena-Viscosity of gases-thermal conductivity – diffusion of gases.

Thermodynamics: (8 hrs)

Basics of Thermodynamics-Carnot's engine (qualitative)-Carnot's theorem-Kelvin's and

Clausius statements-Thermodynamic scale of temperature-Entropy, physical significance-

Change in entropy in reversible and irreversible processes-Entropy and disorder-Entropy of

universe -Temperature-Entropy (T-S) diagram - Change of entropy of a perfect gas-change of

entropy when ice changes into steam, Application of entropy in waste management.

UNIT-II

Thermodynamic potentials and Maxwell's equations: (8 hrs)

Thermodynamic potentials-Derivation of Maxwell's thermodynamic relations-Clausius-

Clayperon's equation-Derivation for ratio of specific heats-Derivation for difference of two specific heats for perfect gas.

Low temperature Physics: (8 hrs)

Joule Kelvin effect-liquefaction of gas using porous plug experiment, Joule expansion-Distinction between adiabatic and Joule Thomson expansion-Expression for Joule Thomson cooling-Liquefaction of helium, Kapitza's method-Adiabatic demagnetization-Production of low temperatures -Principle of refrigeration, vapour compression type, Thermocouple-seebeck effect, Peltier effect and Thomson's effect.

UNIT-III

Quantum theory of radiation: (14 hrs)

Black body-Ferry's black body-distribution of energy in the spectrum of Black body-

Wein's displacement law, Wein's law, Rayleigh-Jean's law-Quantum theory of radiation-Planck's law-deduction of Wein's law, Rayleigh-Jeans law, Stefan's law from Planck's law.

Measurement of radiation using pyrometers-Disappearing filament optical pyrometer-experimental determination—Angstrom pyro heliometers-determination of solar constant, effective temperature of sun.

UNIT-IV

Statistical Mechanics: (14 hrs)

Introduction, postulates of statistical mechanics. Phase space, concept of ensembles and some known ensembles, classical and quantum statistics and their differences, concept of probability, Maxwell-Boltzmann's distribution law - Molecular energies in an ideal gas - Maxwell-Boltzmann's velocity distribution law (qualitative), Bose-Einstein Distribution law- application to Photon energy, Fermi-Dirac Distribution law- free electron gas, comparison of three distribution laws.

NOTE: Problems should be solved at the end of every chapter of all units.

Reference/Suggested books

- 1) Fundamentals of Physics.byHalliday/Resnick/Walker. C. Wiley India Edition 2007.
- 2) Second Year Physics Telugu Academy, Telangana
- 3) **Modern Physics** by **R.**Murugeshan and Kiruthiga Siva Prasath (For Statstical mechanics) S. Chand & Co.
- 4) Modern Physics by G.Aruldhas and P. Rajagopal, Eastern Economy Education.
- 5) **Statistical Physics** by F.Reif Berkeley Physics Course. Volume-5, *The McGraw-Hill Companies*.
- 6) **An Introduction to Thermal Physics** by Daniel V. Schroeder. *Pearson Education Low Price Edition*.
- 7) **Thermodynamics** by R.C. Srivastava, Subit K. Saha & Abhay K. *Jain Eastern Economy Edition*.
- 8) Modern Engineering Physics by A.S. Vasudeva .S. Chand & Co. Publications.
- 9) Feynan's Lectures on Physics Vol. 1, 2, 3 & 4. Narosa Publications.
- 10) Heat and Thermo dynamics: K.W.Zeemansky.
- 11) Introduction to statistical Mechanics" by B.B. Laud (Macmillan 1981).
- 12) Statistical Physics" by F.Reif., (Mc Graw-Hill, 1998)
- 13) **Statistical Physics**" by K.Haung., (Wiley Eastern 1988)

B.Sc (Physics) - I year, Semester - II Paper-II: Thermal Physics Practical lab

No. of hours per week: 2

- 1) Determination of Co-efficient of thermal conductivity of a bad conductor by Lee's method.
- 2) Determination of Stefan's constant-Stefan's experiment.
- 3) Determination of Specific heat of a liquid by using Newton's law of cooling method.
- 4) Determination of heating efficiency of electrical kettle with varying voltages.
- 5) Cooling Curve of a metallic body (Null method).
- 6) Determination of temperature coefficient of resistance using resistance thermometer.
- 7) Study of conversion of mechanical energy to heat.
- 8) Determination of Specific heat of a solid (graphite).
- 9) Thermal expansion of solids
- 10) Calibration of thermo couple
- 11) Simulations for T-S diagram

Note: Minimum of <u>Eight</u> experiments should be performed. Maximum of 15 students per batch and maximum of three students per experiment should be allotted in the regular practical class of three hours per week.

Suggested Books

- 1) D.P.Khandelwal, "A laboratory manual for under graduate classes" (Vani Publishing House, New Delhi).
- 2) S.P.Singh, "Advanced Practical Physics" (Pragati Prakashan, Meerut).
- 3) Worsnop and Flint-Advanced Practical physics for students.
- 4) "Practical Physics" R.KShukla, Anchal Srivastava.

Chaire ton 2

BOARD OF STUDIES

Department of Physics

Kakatiya University.

Warangai-503 000 (T.G.)